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Abstract: The paper describes an approach to the formulation of the decision-making tasks
via specification including such specifying constituents as system, experience, ignorance,
admissible strategy, loss function and decision. The paper shows how to construct the
offered specification on two examples of decision-making problems. One of them is a
simple example from the everyday life; as the second example the fully probabilistic con-
trol design in its state-space setting has been taken. The paper shows how this way of the
material organizing can be applied as the educational resources of the e-learning software.
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1 INTRODUCTION

Nowadays such an approach to the education ase-learningcomes into our life with more and
more force, becoming a popular one in most of universities and educational institutions. But
it should be noted that such an important area of e-learning software content as math-oriented
material (particularly, Bayesian decision making) are still not sufficiently supported nowadays.
It can be said both in terms of a conceptual approach to a structure of the information presented
and from the point of view of implementation of the decision-making (DM) tasks in math-
oriented educational software tools. The paper tries to reduce the lack of the solutions in this
field and offers its own one.

The basic tasks of Bayesian decision making, a lot of books and articles on which are available,
see (Jensen, 2001; Berger, 1985; Bernardo and Smith, 1997), and which is studied by many Ph.
D. students, can be conditionally divided among estimation (point and set), testing of hypothe-
ses, prediction and control. The new approach to organize the educational math-oriented text
is proposed:

to formulate the decision-making tasks uniformly with the help of the specification.

The specification proposed consists of six following constituents:system, experience, igno-
rance, admissible strategy, loss functionanddecision. These constituents are, in essence, the
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concepts, which a decision maker should define when formulating a task. They are not always
so obvious as it may seem.

In order to determine them a decision maker should know the definitions of the concepts
(Kárńy et al., 2005):

• Systemis a part of the world that is of interest for a decision maker who should either
describe or influence it.

• Experienceis knowledge about the system, available to the decision maker for the selec-
tion of the particular decision.

• Ignoranceconcerns knowledge about the system, unavailable to the decision maker.

• Admissible strategyis a mapping from experience to actions, that meets physical con-
straints, implied by the system and the actuator.

• Loss functionquantifies the degree of achievement of the DM aim by assigning to each
realization of behavior a number on real line.

• Decisionis the value of a quantity that can be directly chosen by the decision maker for
reaching decision maker’s aims.

The paper will show how the DM tasks at different levels – both the simple task from everyday
life and the complex theoretical DM problem – can be structured according to the specification.

2 DECISION-MAKING TASK SPECIFICATION APPLICATION

2.1 Example from everyday life

In order to demonstrate a specification of the DM task, let’s make a simple example from
everyday life. Let a decision maker be an usual student. Assume that a student has the following
aim: to become a good specialist, who has a good knowledge and excellent diploma. Such the
aim can be expressed in another way as it follows.

Aim: to minimize a divergence between the knowledge of the student and knowledge of a good
specialist.

For this example the specification can be presented in the following way.

• System:is the student, who has the lectures, study material and teachers as the inputs and
exams and marks (in principle, the student’s knowledge) as the outputs;

• Experience:past marks, mapping a student’s level of knowledge; student’s abilities;

• Ignorance: such factor as the exam, which can include the psychological state of stu-
dent’s health, a teacher’s behavior, transport problems;

• Admissible strategy:time and energy of the student that can be devoted to study, re-
stricted by schedule, number of exams and subjects, other duties;

• Loss function:the quality of knowledge expressed in marks; time spent to study;
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• Decision:how much time and energy the student will devote to study, taking into account
all the restrictions.

This example from life is very simple and, probably, it does not stand up to criticism. But the
principle of composing the specification is clear now.

2.2 Fully probabilistic design

The fully probabilistic design (FPD) (Ḱarńy, 1996), which can be interpreted as a superstruc-
ture of Bayesian DM on the whole and under the corresponding setting can include majority of
DM tasks, is a good example to demonstrate the approach.

Preliminaries The next notations are used throughout this section of the paper:≡ is equality
by definition; X∗ denotes a set ofX-values;X̊ means cardinality of a finite setX∗; f(·|·)
denotes probability density function (pdf) that is assumed to exist;t labels discrete-time mo-
ments,t ∈ t∗ ≡ {1, . . . , t̊}; t̊ < ∞ is a given control horizon;dt = (yt, ut) is the data record at
time t consisting of an observed system outputyt and of an optional system inputut; xt is an
unobserved system state;d, x are assumed to be finite-dimensional;X(t) denotes the sequence
(X1, . . . , Xt), X(t) ∈ {y(t), u(t), x(t)}.

The FPD uses the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)

D
(
f ||f̃

)
≡

∫
f(X) ln

(
f(X)

f̃(X)

)
dX (1)

to measure the proximity of a pair of pdfsf, f̃ acting on a setX∗. The key property of KL
divergence is

D(f ||f̃) ≥ 0, D(f ||f̃) = 0 iff f = f̃ almost everywhere onX∗. (2)

The FPD deals with the controlled closed loop system and describes it entirely in probabilistic
terms. In order to represent the desired joint distribution of the considered closed loop variables
the FPD requires theideal pdf to be introduced.

The aimof the FPD task can be formulated in the following way:

Find admissible control strategy minimizing the KL divergenceD
(
f̊t|| If̊t

)
,

wheref̊t is the joint pdf describing the controlled closed loop andIf̊t is the ideal pdf.

Despite the aim is formulated, it remains rather indistinct without precise specification of DM
task.

FPD specification The task of FPD can be specified with the help of constituents proposed in
the following way.

System:The joint pdf describing the controlled closed loop can be decomposed with the help
of the chain rule (Peterka, 1981).

f(d(̊t), x(̊t)|x0) = (3)

3

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia



= f(x0)
∏

t∈t∗
f(yt|ut, x(t), d(t− 1))f(xt|ut, x(t− 1), d(t− 1))f(ut|x(t− 1), d(t− 1)).

From this relation it follows that the system is described byobservation modelf(yt|ut, x(t), d(t−
1)), thestate evolution modelf(xt|ut, x(t−1), d(t−1)) and the generalrandomized controller
f(ut|x(t− 1), d(t− 1)) (Kárńy and Guy, 2004).

The followingassumptionsare made about the system models:

• the unobserved system statext does not depend on the past history of the system, i.e.

f(xt|ut, x(t− 1), d(t− 1)) = f(xt|ut, xt−1);

• the probability distribution of the observed system outputyt is determined only by the
current system inputut and the system statext, i.e.

f(yt|ut, x(t), d(t− 1)) = f(yt|ut, xt).

Admissible strategies:The set of admissible actions is restricted by the followingassumption:

• admissible control strategies generate the system inputut from the observed data history
d(t− 1) and ignore the unobserved statesx(t− 1), i.e.

f(ut|x(t− 1), d(t− 1)) = f(ut|d(t− 1)).

Hence, the joint pdf (3) reduces to

f(d(̊t), x(̊t)|x0)f(x0) =
∏

t∈t∗
f(yt|ut, xt)f(xt|ut, xt−1)f(ut|d(t− 1))f(x0), (4)

and the models of the system define the conditional probability distributions

f(yt|ut, xt), f(xt|ut, xt−1), f(ut|d(t− 1)).

Loss function:The loss function for the FPD task follows from its DM aim, namely, from
searching the admissible control strategy minimizing the KL divergence (1). It means, the KL
divergence between the joint pdf described the closed control loop and the decision maker’s
ideal pdf will be the loss function.

The decision maker’s ideal pdf is constructed in the way analogous to (4)(note an appearance
of superscriptI)

If(d(̊t), x(̊t)|x0)
If(x0) =

∏

t∈t∗

If(yt|ut, xt)
If(xt|ut, xt−1)

If(ut|d(t− 1))f(x0), (5)

where pdf If(yt|ut, xt) describes the ideal model of observation,If(xt|ut, xt−1) – the ideal
model of state evolution,If(ut|d(t− 1)) – the ideal control law.

It is obviously that the prior pdf on initial statesx∗0 cannot be influenced by the optimized
control strategy, soIf(x0) = f(x0).
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Experience:The knowledge about the system, available to the decision maker for achieving the
aim, includes the past outputs, the model structure and model parameters. Theoretically, the
problem of identification could be included in a list of the tasks for FPD, but here the parameters
are supposed to be known.

Ignorance:Such knowledge about the system as future inputs, future outputs and all the system
states is not available to the decision maker.

Decision:It has been already mentioned that the FPD is considered in its space-state setting.
According to the previous constituent, the knowledge about the system states is unavailable to
achieve the DM aim. Therefore, the decision maker should solve the state estimation task.

Bayesian filtering in closed control loop includes the next steps (Peterka, 1981) on conditions
that the prior pdff(x0) is available:

f(xt|ut, d(t− 1)) =
∫

f(xt|ut, xt−1)f(xt−1|d(t− 1)) dxt−1 (6)

f(xt|d(t)) =
f(yt|ut, xt)f(xt|ut, d(t− 1))∫
f(yt|ut, xt)f(xt|ut, d(t− 1)) dxt

︸ ︷︷ ︸
f(yt|ut,d(t−1))

, (7)

where (6) is understood as the time updating, while relation (7) as data updating.

Thus the state estimation task built in the FPD is solved. The successive task, necessary to
achieve the decision making aim, is the regulation problem.

Let the joint pdff(x(̊t), d(̊t)|x0) and the ideal oneIf(x(̊t), d(̊t)|x0) be considered according
to the previous constituents of the specification.

The optimal admissible control strategy, which minimizesD
(
f̊t|| If̊t

)
is randomized one given

by the pdfs

of(ut|d(t− 1)) = If(ut|d(t− 1))
exp[−ω(ut, d(t− 1))]

γ(d(t− 1))
, t ∈ t∗, (8)

γ(d(t− 1)) ≡
∫

If(ut|d(t− 1)) exp[−ω(ut, d(t− 1))] dut.

Starting withγ(d(̊t)) ≡ 1, the functionsω(ut, d(t − 1)) are generated recursively fort =
t̊, t̊− 1, . . . , 1 in a backward manner, as it is shown below

ω(ut, d(t− 1)) ≡
∫

Ω(ut, d(t− 1), xt−1)f(xt−1|d(t− 1))dxt−1, (9)

wheref(xt|d(t)) is updated according to the filtering operations (6)-(7) and

Ω(ut, d(t− 1), xt−1) ≡ (10)

≡
∫

f(yt|ut, xt)f(xt|ut, xt−1) ln

(
f(yt|ut, xt)f(xt|ut, xt−1)

γ(d(t)) If(yt|ut, xt) If(xt|ut, xt−1)

)
dyt dxt.

The result is based on the use of the definition of the KL divergence (1), its basic property (2),
Fubini theorem on multiple integration (Rao, 1987), marginalization and normalization of pdfs
and the chain rule for them (Peterka, 1981).
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3 CONCLUSIONS

Thus, with the help of specifying the DM tasks in the described way, it is possible to create
a great number of the individual case studies, each with its own specification. Among the
advantages of the approach it is worth enumerating the next ones: (i) uniformly specified ex-
amples give maximum information about task’s features to the students; (ii) with a knowledge
of specification the students can compare the different algorithms and are prepared to see a task
implementation in MATLAB; (iii) terminological connection of particular tasks with general
theory gives the students better understanding of the subject. A collection of specified examples
and theory are available at moodle.utia.cas.cz.
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